GATE Syllabus for Chemical Engineering
ENGINEERING MATHEMATICS
Linear Algebra: Matrix algebra, Systems of linear equations, Eigen values and eigenvectors.
Calculus:
Functions of single variable, Limit, continuity and differentiability,
Mean value theorems, Evaluation of definite and improper integrals,
Partial derivatives, Total derivative, Maxima and minima, Gradient,
Divergence and Curl, Vector dentities, Directional derivatives, Line,
Surface and Volume integrals, Stokes, Gauss and Green's theorems.
Differential equations: First order
equations (linear and nonlinear), Higher order linear differential
equations with constant coefficients, Cauchy's and Euler's equations,
Initial and boundary value problems, Laplace transforms, Solutions of
one dimensional heat and wave equations and Laplace equation.
Complex variables: Analytic functions, Cauchy's integral theorem, Taylor and Laurent series, Residue theorem.
Probability and Statistics:
Definitions of probability and sampling theorems, Conditional
probability, Mean, median, mode and standard deviation, Random
variables, Poisson, Normal and Binomial distributions.
Numerical Methods:
Numerical solutions of linear and non-linear algebraic equations
Integration by trapezoidal and Simpson?s rule, single and multi-step
methods for differential equations.
CHEMICAL ENGINEERING
Process Calculations and Thermodynamics:
Laws of conservation of mass and energy; use of tie components;
recycle, bypass and purge calculations; degree of freedom analysis.
First and Second laws of thermodynamics. First law application to close
and open systems. Second law and Entropy Thermodynamic properties of
pure substances: equation of state and departure function, properties
of mixtures: partial molar properties, fugacity, excess properties and
activity coefficients; phase equilibria: predicting VLE of systems;
chemical reaction equilibria.
Fluid Mechanics and Mechanical Operations:
Fluid statics, Newtonian and non-Newtonian fluids, Bernoulli equation,
Macroscopic friction factors, energy balance, dimensional analysis,
shell balances, flow through pipeline systems, flow meters, pumps and
compressors, packed and fluidized beds, elementary boundary layer
theory, size reduction and size separation; free and hindered settling;
centrifuge and cyclones; thickening and classification, filtration,
mixing and agitation; conveying of solids.
Heat Transfer:
Conduction, convection and radiation, heat transfer coefficients,
steady and unsteady heat conduction, boiling, condensation and
evaporation; types of heat exchangers and evaporators and their design.
Mass Transfer:
Fick's laws, molecular diffusion in fluids, mass transfer coefficients,
film, penetration and surface renewal theories; momentum, heat and mass
transfer analogies; stagewise and continuous contacting and stage
efficiencies; HTU & NTU concepts design and operation of equipment
for distillation, absorption, leaching, liquid-liquid extraction,
drying, humidification, dehumidification and adsorption.
Chemical Reaction Engineering:
Theories of reaction rates; kinetics of homogeneous reactions,
interpretation of kinetic data, single and multiple reactions in ideal
reactors, non-ideal reactors; residence time distribution, single
parameter model; non-isothermal reactors; kinetics of heterogeneous
catalytic reactions; diffusion effects in catalysis.
Instrumentation and Process Control:
Measurement of process variables; sensors, transducers and their
dynamics, transfer functions and dynamic responses of simple systems,
process reaction curve, controller modes (P, PI, and PID); control
valves; analysis of closed loop systems including stability, frequency
response and controller tuning, cascade, feed forward control.
Plant Design and Economics:
Process design and sizing of chemical engineering equipment such as
compressors, heat exchangers, multistage contactors; principles of
process economics and cost estimation including total annualized cost,
cost indexes, rate of return, payback period, discounted cash flow,
optimization in design.
Chemical Technology:
Inorganic chemical industries; sulfuric acid, NaOH, fertilizers
(Ammonia, Urea, SSP and TSP); natural products industries (Pulp and
Paper, Sugar, Oil, and Fats); petroleum refining and petrochemicals;
polymerization industries; polyethylene, polypropylene, PVC and
polyester synthetic fibers. |
|